International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 3 Number 5 (2014) pp. 634-639 http://www.ijcmas.com

Original Research Article

Community-associated *Staphylococcus aureus* infections among children at the paediatric hospital in Benghazi city/ Libya (2008 - 2013)

Ismaeel H Bozakouk^{1*}, Najla Mustafa El Hassi², Nadia El Megrab², Mohamad Bumedian¹, Amal Abdulbatti El Fakhri², and Farag Bleiblo^{1, 3}

 ¹Microbiology, Botany Department, Faculty of Science, University of Benghazi, Benghazi, Libya
 ²Microbiology Department, Central Laboratory, Paediatric Hospital, Benghazi, Libya
 ³Department of Chemistry and Biochemistry and the Bimolecular Sciences Program, Laurentian University, Sudbury, P3E 2C6, ON, Canada

*Corresponding author

ABSTRACT

Keywords

Staphylococcus aureus; Communityassociated diseases; excessive use to antibiotics Prevalence of Staphylococcus aureus infection is of the things that worries many countries, especially when it can be develop to become a human life threatening disease, currently this pathogen is endemic in many countries worldwide. Because of the excessive use to antibiotics and medicine non-fully prescribed by doctors in addition to the lack of awareness among families led to the emergence of many resistant strains as well as increase the spread of infection among Libyan community. This study carried out to determine the epidemiology of S. aureus among children at Benghazi paediatric hospital compare to the infections with other pathogenic bacteria. For six years (2008 - 2013) including sites of infection S. aureus samples were collected from all children hospital's wards and outpatient department (OPD). The results were emerged 418 S. aureus isolates out of 968 (43.2 %) (Total Gram positive and Gram negative infected patients). in comparison with other bacterial infections there were two hundred and twenty three isolates (43 % of total S. aureus infections) from ear, one hundred and fifty eight isolates (48.9 %) are different skin infections, seventy one (19.7 %) are throat, thirty five (42.8%) are nose, and twenty one (38.1 %) from eye infections. This study has indicated that the prevalence rate of S. aureus was high among children community members and this represents risk factors.

Introduction

Staphylococcus aureus remarkably causes an extremely broad range disease from superficial skin lesions [boils or furuncles, pneumonia, mastitis, meningitis, urinary tract infections] to deep seated infections

such as central nervous system infections, osteomyelitis, endocarditis, septicaemia, pneumonia and syndromes caused by exotoxins(Lowy, 1998). *S. aureus* causes the majority of hospital acquired infections

including bacteraemia, contaminated surgical site infections (SSIs) such as bone and joint infections, pneumonia and urinary tract infections (Livermore, 2000). *S. aureus* cause arthritis, toxic shock syndrome, toxic epidermal necrolysis and food poisoning.

S. aureus colonisation of the nares leads to hand carriage, and from the hands, the organisms are frequently spread to other areas of the body (Zimakoff et al., 1996) S.aureus causes skin infections, from where it can develop to be a source for more serious diseases such as bacteraemia, endocarditis or toxaemias. Moreover boils can develop into deep-seated infections of several hair follicles (Kauffman and Bradley, 1997). S. aureus is a significant haemodialysis cause of related bacteraemia (Lentino et al., 2000) and both native and replacement valve endocarditis (Mylonakis and Calderwood, 2001). It is responsible also for respiratory tract infections such as pneumonia (Coello, et al., 2003). In England S. aureus was responsible for 53 % of surgical infections between 1997 - 2005 (Casey et al., 2007). In the United States, infections with S. aureus annually constitute a high percentage of nosocomial infections (Emori and Gaynes 1993). Communityacquired S. aureus infection are growing health problem in many places around worldwide including the United States, Europe, Scandinavia and Japan (Farzana and Hameed 2006 and Rojo et al., 2010). The aim of this study to determine S. aureus infection distribution pattern among children at Children hospital in Benghazi city - Libya.

Materials and Methods

Samples collection

Between January 2008 and December

2013, bacterial samples were collected from patients from the out patients department (OPD) and from patients hospitalized with at least 72 hours stay in different wards in the children hospital in Benghazi city/ Libya and were diagnosed with Staphylococcus aureus and or other microbial infection. Samples were collected from the most likely site of infection via cotton swabs including wound secretions, ear, throat, nose, and eye then sent to the microbiology central laboratory for identification.

Growth conditions

S. aureus and other Gram positive isolates were grown aerobically and facultative anaerobically on blood agar, McConkey agar, and chocolate agar. Other Gram negative pathogens were grown aerobically on McConkey agar, Triple Sugar Iron agar (TSI), Hydrogen sulfide indole motility agar (SIM) and Urease agar.

Bacterial Identification

For accurate and rapid identification of clinically relevant gram positive and gramnegative bacteria a BD PhoenixTM Automated Microbiology System was used. For gram positive pathogens, samples were tested further for catalase, coagulase and DNase production, the samples were positive to these tests were identified as S. aureus. In order to identify gram negative bacteria some cases required additional tests including oxidase-reaction and using Api 20 E system for presence of *Enterobacteriaceae* pathogens.

Results and Discussion

Spreading of *S. aureus* infection among children at children hospital in Benghazi

city is not well characterized. Using cotton swabs microbial samples were collected from different body sites including ear, skin secretions, nose, throat, and eye. Among the patients who are visiting children hospital, there is around 2,498 cases have been forwarded for microbiological investigating, 968 (32%) are the total of bacterial infections which recorded.

Table (1)traditional shows microbiological analysis that identifying 418 S. aureus strains (43.2%) out of the other Gram positive and Gram negative bacteria. There are 223 (43.1%) from ear, 158 (48.8%) from skin secretions. 71(19.7%) from throat, 35 (42.8%) from nose, and 21 (38.1%) from eye. The distribution of other pathogenic bacteria compare to S. aureus are listed in table (1), here we found that, S. aureusis the most frequently isolated (43.2%), followed by Pseudomonas aeruginosa (15.9),Klebsiella spp. (12.7%)Acinetobacterspp. (2.9%) and *Proteus spp.* (2.7%). The (3.7%)of isolates remaining are Enterobacter Alcalegens spp., spp. Serretia spp., and Citrobacter spp.

In order to investigate the epidemiology of *S. aureus*, Figure (1) shows the infection with *S. aureus* at different site within six years, the results are indicating the most frequently sites infected with *S. aureus* are ear and skin and the highest number of ear infection was recorded in 2012 whereas the highest number of skin infection was recorded in 2010. Other sites including nose, throat, and eye showing less number of infections.

To gain further understanding of *S. aureus* prevalence a comparison with other pathogenic bacteria was carried out. The results in figure (2) show high *S. aureus* infection rates in all years.

Despite the advancement in many scientific fields and from which the understanding of the mechanisms that enable pathogens to cause diseases and to control it, however, there is an obvious contradiction with the constant increase in the incidence of *S. aureus* infection. Indeed, *S. aureus* are supper bugs, they have several pathogenic strategies enable them to survive and colonize into different human body sites (Naber, 2009).

	Gram positive bacteria						Gram negative bacteria												
Infection sites	Tested*	Staphylococcus aureus		Staphylococcus epidermidis		Streptococcus pneumonia		Pseudomonas aeruginosa		Klebsiella spp.		Escherichia coli		Acinetobacter		Proteus spp.		Others	
		N0.	%	N0.	%	N0.	%	N0.	%	N0.	%	N0.	%	N0.	%	No.	%	No.	%
Ear	517	223	43.1	52	10	35	6.8	112	21.7	34	6.6	16	3.1	9	1.7	18	3.5	18	3.5
Wounds	324	158	48.8	3	0.9	5	1.5	26	8	70	21.6	29	9	15	4.6	7	2.2	11	3.4
Throat	71	14	19.7	2	2.8	22	31	10	14.1	11	15.5	3	4.2	3	4.2	0	0	6	8.5
Nose	35	15	42.8	9	25.7	0	0	3	8.6	5	14.3	2	5.7	0	0	0	0	1	2.9
Eye	21	8	38.1	2	9.5	0	0	3	14.3	3	14.3	1	4.7	3	14.3	1	4.8	0	0
Total	968	418	43.2	68	7	62	6.4	154	15.9	123	12.7	51	5.3	30	3.1	26	2.7	36	3.7

Table.1 Distribution of Community-associated *S.aureus* infections vs otherpathogens among children 2008 - 2013 (n = 968).

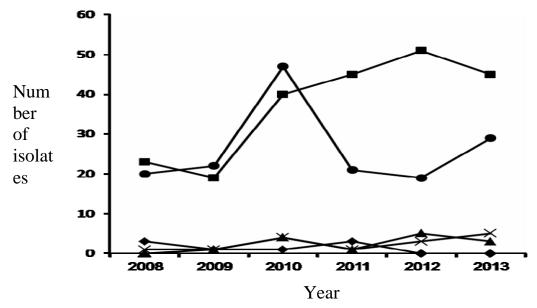
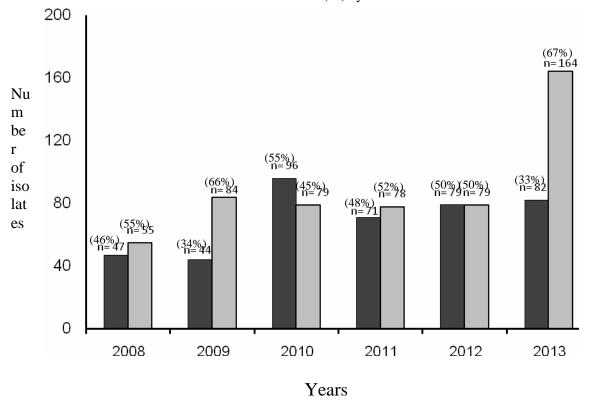



Figure.1 Prevalence of S. aureus infection by the sites of infections, 2008 - 2013
Presence of S. aureus infection at different sites including: (■) ear, (●)skin, (▲) throat, (×)nose, and (◆) eye.

Figure.2 Emergence of *S. aureus* infection among children within 2008 - 2013 Determination the rates of *S. aureus* infection (■) compare with the infection with other pathogens (■), 2008 - 2013.

In this study, S. aureus has represented the highest infection rate among children compare to the infection with the other pathogens. The infections with S. aureus into the ear and throat are high compare with the other body sites. Strains S. aureus, P. aeruginosa, Klebsiellaspp. and E. coli were the most frequently pathogens isolated from wounds. This is an agreement with several studies that represented the prevalence of aerobes such as S. aureus, E. coli and Klebsiella spp. into the burn wound infections, such opinion has been formed on the bases of skin contamination (Mayhall, 1993: Revathi et al., 1998 and Khalili et al., 2012). In contrast a study by Khalili et al. (2012) has reported E. coli was the most frequent pathogen from wound (Khalili et al., 2012). Also in this study the most the frequent pathogens isolated from the ear were S. aureus, P. aeruginosa and Klebsiella spp. This is slightly different result from another study has showed just S. aureus and P. aeruginosa are leading pathogens from ear specimens (Tahiri and Mustafa, 2008).

S. pneumonia and S. aureus were the most frequent gram positive pathogens from throat, whereas gram negative pathogens including Klebsiella spp. P. aeruginosa were the leading pathogens from throat site. A study has reported S. pneumonia is not representing the most common gram positive pathogen infecting throat but S. aureus (Tahiri and Mustafa, 2008). On the other hand, our study was identical with a study has shown P. aeruginosa and Klebsiella spp. were the most frequently pathogens isolated from respiratory tract (Hadadi et al., 2008 and Khalili et al., 2012).

References

Casey, A. L., P. A. Lambert and Elliott, T.

S. 2007. Staphylococci. Int J Antimicrob Agents 29 Suppl 3:S23-32.

- Coello, R., A. Charlett, V. Ward, J. Wilson, A. Pearson, J. Sedgwick, and Borriello P. 2003. Device-related sources of bacteraemia in English hospitals--opportunities for the prevention of hospital-acquired bacteraemia. *J Hosp Infect* 53 (1):46-57.
- Emori, T. G., and Gaynes, R. P. 1993.An overview of nosocomial infections, including the role of the microbiology laboratory. Clin. Microbiol Rev 6 (4):428-42.
- Fadeyibi, I.O., M.A. Raji, N.A. Ibrahim,
 A. O. Ugburo and Ademiluyi, S.
 2013. Bacteriology of infected burn wounds in the burn wards of a teaching hospital in Southwest Nigeria. *Burns*, 39(1):168-73.
- Farzana, K. and Hameed, A. 2006. Resistance pattern of clinical isolates of *Staphylococcus aureus* against five groups of antibiotics.J. Res. Sci. 17:19-26.
- Hadadi, A.,M.Rasoulinejad, Z. Maleki, M. Yonesian, A. Shirani and Kourorian,
 Z. 2008. Antimicrobial resistance pattern of Gramnegative bacilli of nosocomial origin at 2 university hospitals in Iran. Diagnostic Microbiology and Infectious Disease, 2008, 60:301–305.
- Kauffman, C. A. and Bradley,S. F. 1997.Epidemiology of communityacquired infection. In:Crossley, K. B. and G. L. Archer (Eds.) The staphylococci in human disease.Churchill Livingstone, New York: 287-308.
- Khalili, H., R. Soltani, S. Afhami, S. Dashti-Khavidaki and Alijani,B. 2012.Antimicrobial resistance

pattern of Gram-negative bacteria of nosocomial origin at a teaching hospital in the Islamic Republic of Iran.EMHJ. 18: (2). 172 - 177.

- Lentino, J. R., L. M. Baddour, M. Wray, E. S. Wong and Yu, V. L. 2000.*Staphylococcus aureus* and other bacteremias in hemodialysis patients: antibiotic therapy and surgical removal of access site. *Infection* 28 (6):355-60.
- Livermore, D. M. 2000. Antibiotic resistance in *Staphylococci*. *Int J Antimicrob Agents* 16 Suppl 1:S3-10.
- Lowy, F. D. 1998.*Staphylococcus aureus* infections. *N Engl J Med* 339 (8):520-32.
- Mayhall, C. G. 1993.Surgical infections including burns, p. 614–664. In R. P. Wenzel (ed.), Prevention and control of nosocomial infections, 2nd ed. The Williams & Wilkins Co., Baltimore, Md.
- Mylonakis, E. and Calderwood, S. B. 2001. Infective endocarditis in adults. *N Engl J Med* 345 (18):1318-30.
- Naber, C. K. 2009. *Staphylococcus aureus* bacteremia: epidemiology, pathophysiology, and management strategies. Clin Infect Dis. 48 (Suppl 4): 231–7.
- Revathi, G., J. Puri and Jain, B. K. 1998.Bacteriology of burns.*Burns* 24:347–349.
- Rojo, P., M. Barrios, A. Palacios, C.
 Gomez and Chaves, F. 2010.
 Community associated Staphylococcus aureus infections in children. Expert Rev Anti Infect Ther. 8(5):541-54.
- Tahiri Z. and Mustafa, A. 2008. Pathogenic microbiological flora recovered from ear, nose and throat specimens in a regional hospital in Kosovo. *Niger J Med.* 17(3):275-9.

Zimakoff, J., F. Bangsgaard Pedersen, L. Bergen, J. Baago-Nielsen, Β. Daldorph, F. Espersen, B. Gahrn Hansen, N. Hoiby, O. B. Jepsen, P. Joffe, H. J. Kolmos, M. Klausen, K. Kristoffersen, J. Ladefoged, S. Olesen-Larsen, V. T. Rosdahl, J. Scheibel, B. Storm and Tofte-Jensen.P. 1996.*Staphylococcus* aureus carriage and infections among patients in four haemo- and peritoneal-dialysis centres in Denmark. The danish study group of peritonitis in dialysis (DASPID). J Hosp Infect 33 (4):289-300.